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Abstract

A program is written that implements a 3-dimensional Ising model and the Metropolis algo-
rithm to simulate the phase transition of a ferromagnet to a paramagnet. Vanishing magnetization
and a discontinuity in the average energy for simulated data is observed at the Curie temperature.
Simulated data compared to experimental measurements of CoNiFeCB magnetization as a function
of temperature shows that the simulation approaches the Curie temperature quicker. The Curie
temperature for CoNiFeCB is measured to be approximately 600 ◦C.

1 Introduction

Ferromagnetic materials posses a spontaneous
magnetic moment which arises from the regular
arrangement of their electron spins. In a fer-
romagnet the unpaired electrons arrange their
alignments parallel to one another within do-
mains separated by so-called Bloch walls. The
most well known ferromagnetic materials are
iron, nickel and cobalt. Upon application of a
magnetic field to a ferromagnetic sample, the do-
mains will align and the material is said to be
magnetized. Curiously, if a ferromagnetic sam-
ple is heated above a certain critical temper-
ature, the sample’s magnetization disappears;
this temperature is the Curie temperature. The
phase transition that takes place at the Curie
temperature is from spin aligned ferromagnetism
to disordered paramagnetism. [1][2]

An interesting application for ferromagnetic
materials may be found in electronics such as
in ferroelectric random access memory for com-
puters (FeRAM). [3] From these points of inter-
est, we aim to understand and model the phase
transition at the Curie temperature that charac-
terize ferromagnetic samples. In this study we

simulate the thermodynamic effects on spin in a
ferromagnet and compare the simulation to data
collected from a CoNiFeCB sample consisting of
measurements of magnetization as a function of
temperature.

Figure 1: A 3D lattice of 100 spins initially
aligned spin-up. Spin up states are denoted with
circles and down states are shown as blank ar-
eas. Domains begin to form as the system equi-
librates. [2]
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2 Description of simulation &

algorithm

2.1 Ising model

The mathematical model of ferromagnetism
we use is the Ising model which takes a Z dimen-
sional lattice and statically represents an atomic
spin at each vertex. We will use a 3-dimensional
model. Since the particles are fixed at each ver-
tex, we need not be concerned with the Pauli
exclusion principle implying the antisymmetry of
the wave function since no particles may be ex-
changed in this system. A particle’s initial state
is denoted si and may be either spin-up or spin-
down as shown by the following relation.[2]

si ≡ sz,i = ±
1

2
(1)

Were s is spin, z just denotes the axis that the
spin is directed along, and 1

2 is the value of the
electron spin. If there are N particles in this
system, the total number of possible states is 2N .
Thus, the ket vector for this system is

|sj〉 = |s1, s2, s3, ..., sN 〉 , j = 1, 2N . (2)

Furthermore, we may model the spin-spin in-
teraction as a dipole-dipole interaction as known
from quantum mechanics. From solid state
physics we know that spins interact with their
immediate neighbor, with the exchange field, and
the external magnetic field. Thus we have the
following potential

Vi = −J~si · ~si+1 − gµb~si · ~B (3)

Here, V is the potential for some state i, J is the
exchange energy which is the strength of spin-
spin interaction, g and µb is the gyromagnetic
ratio constant and the Bohr magneton respec-
tively, and s denotes, as usual, spin.

Due to the extremely large number of par-
ticles in systems such as this, usually given as
1023 particles, statistical methods are necessary.
The Ising model uses the Boltzmann distribution

to obtain the probabilistic energy of the system,
and is given in equation (4).

P (sj) =
e−E(sj)/kT

∑
sj

e−Ej/kT
(4)

Above, P represents probability, E denotes en-
ergy, and k and T is Boltzmann’s constant and
temperature respectively. The Boltzmann dis-
tribution says that states with lower energy are
more likely to occur, while states with higher
energy are possible, yet have less probability to
occur. The energy of the system to be applied to
equation (4) is given by the expectation value of
(3) over all states of the system, which is shown
in the following equation. [2] [4]

E(s) = 〈s|
∑

i

Vi |s〉 = −J

N−1∑

i=1

sisi+1−Bµb

N∑

i=1

si

(5)

An interesting outcome of the Boltzmann dis-
tribution which one can see in figure (1) and
which we will see more of below, is that there
is no single configuration of lowest energy. The
statistical nature of the thermodynamics which
effect the spin arrangements are constantly ran-
domly exchanging via thermal energy and the
exchange field. A written C++ program im-
plements the Ising model in three dimensions
by randomly flipping the spin of dipole arrange-
ments in the lattice points of a cube. After a
random number generator is seeded with num-
ber 94180717 the program is run and a loop ran-
domly determines spin-up or spin-down and cal-
culates the energy based on equation (5). The
program determines lowest energy, and a three
dimensional map of spin-up states is output.

2.2 Metropolis algorithm

The Metropolis algorithm is similar to Monte
Carlo methods, but extends it to essentially be
a Markov chain Monte Carlo which allows one
to apply it to the Boltzmann distribution. The
notion of the Metropolis algorithm is that the
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arrangements of the spins which randomly al-
ternate between spin-up and spin-down due to
thermodynamics, are processed via the variance
reduction method and the von Neumann reduc-
tion technique. The variance reduction method
reduces computation time by obtaining a min-
imum variance between functions so that inte-
gration may be solved quicker than when con-
sidering the set of smaller and larger variances
combined. The von Neumann rejection tech-
nique generates random points in a probability
distribution and counts only those point that fall
within the desired weighting function. [2]

The outline of the Metropolis algorithm is the
following. First, initial temperature and con-
figuration of all states beginning in spin-up in
the 3-dimensional lattice is set and the algo-
rithm runs until the system reaches equilibrium.
Next, a particle is chosen randomly and its spin
is flipped, this generates a statistically random
configuration of which we may calculate thermo-
dynamic quantities such as magnetization and
internal energy. After energy is calculated, the
following conditionals are the main parts of this
algorithm. If E(strial) ≤ E(sj), then accept and
set sj+1 = strial. If E(strial) > E(sj), then
accept with relative probability P = e−∆E/kT .
Within this last step, another random number
between 0 and 1 is generated and compared to
the probability just obtained. If the random
number is less than or equal to the probabil-
ity, the spin state is accepted and set to sj+1,
and if the probability is less than the random
number, the state is rejected. The key to the
Metropolis algorithm is that states that are not
lowest energy are not simply thrown away be-
cause that is not how thermodynamic statisti-
cal systems work. The states with higher en-
ergy are run through the second conditional and
determined whether it is accepted to rejected,
which shows that higher energy states although
less probable are still kept to a statistical degree
in the system. [2]

A C++ program written by the author based
off of the outline given above implements the

Metropolis algorithm and a 3-dimensional Ising
model. The source code is freely available upon
request. The program is run for various temper-
atures thereby obtaining the temperature depen-
dence of the spin system.

3 Experiment

This semester the author has been granted an
Undergraduate Research Opportunity through
the University of Hawaii at Manoa (UROP) for
the project: Magnetization characterization of
novel multiferroic materials, dependence of par-
ticle size, temperature, strength and gradient
of magnetic field. A summary of the experi-
mental set up is given here. Measurements of
thermo-magnetic properties are conducted using
Faraday’s balance method in an external non-
uniform magnetic field. Direct current power
supply provides current for a solenoid which in-
duces a time constant magnetic field. The fer-
rite sample is placed in the measurement posi-
tion and lowered into the solenoid by use of a
custom-made high temperature resistant dielec-
tric diamagnetic holder. The measurement of
the magnetic field is done by a high precision
balance, the Sartorius Entris 64-1S.

During the complete duration of measurement
while the sample is in the magnetic field, tem-
perature is monitored with a high precision elec-
tronic thermometer and using a high tempera-
ture resistant thermocouple. Magnetization is
measured up to 900K in steps of 20K. The sam-
ple is heated in a custom made electric oven
where a variable transformer is used to provide
power to the oven which enables excellent control
over the heating rate. Controlling the heating
rate is important since the temperature gradient
is one of the parameters which strongly influence
the magnetization of the sample.

The goal of the UROP experiment is to mea-
sure the magnetic and electric properties of sev-
eral ferroic materials as a function of tempera-
ture and particle size. The aim is to find the
optimal compound mixture and thermal prepa-

3



 T, (K)∝
0 1 2 3 4 5 6 7 8

)
-3

m
-1

M
ag

ne
tiz

at
io

n,
 (

JT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

3D simulation with Ising lattice

Figure 2: Magnetization as a function of temper-
ature in simulation with the 3D Ising model and
the Metropolis algorithm. Note the Curie tem-
perature is observed approximately proportional
to 4.5 K, and also relates to the peaks found in
figures (3a) and (3b).

ration, and to establish the relationship between
composition and thermal treatment compared to
material performance. The initial compound of
CoNiFeCB is measured and discussed in this pa-
per, with more samples to be measured in the
Spring of 2017. [5]

4 Discussion

The 3-dimensional model compared to the 1-
dimensional case results in less fluctuation of
spins due to an increase of couplings to near-
est neighbor and thus an increase in thermal
inertia.[2] An important aspect of the program is
the periodic boundary conditions which are con-
ditionals that keep track of on-going loop sum-
mations in the three dimensional array to the
boundaries within the cubic structure. The total
number of particles, N , applied in the program
is 2000.

Figures (2), (3a), and (3b) show simulation re-
sults from the 3-dimensional Ising model and the
Metropolis algorithm for magnetization, specific
heat, and susceptibility respectively. In thermo-
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Figure 3: (a) Specific heat as a function of tem-
perature from simulation results. (b) Suscepti-
bility as a function of temperature.

dynamics, temperature is often expressed as pro-
portional to kT , where k is Boltzmann’s constant
and T is temperature; in the plots we express kT
as ∝ T .

Phase transition is clearly observed as shown
in figure (2) from the ferromagnetic case to para-
magnetic. Magnetization vanishes at approxi-
mately a temperature proportional to 4.5 K. The
specific heat and susceptibility also show peaks
at the Curie temperature. Interestingly, specific
heat and susceptibility peak for a certain width
around the Curie temperature then as temper-
ature increases, the values for the function fall
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Figure 4: The average energy of the system as a
function of temperature from the simulation.

back down to zero. This shows that when the
Curie temperature is met, the configuration of
paramagnetic disordered states have a maximum
value for specific heat and susceptibility.

Figure (4) plots the average energy of the sys-
tem. As temperature in the simulation is in-
creased, energy increases with a discontinuity in
the increasing slope being observed at approxi-
mately a temperature proportional to 4.4 K. This
discontinuity also corresponds to the Curie tem-
perature.

Measured magnetization from a CoNiFeCB
sample as a function of temperature is plotted in
figure (5) and compared to a scaled plot of the
simulation results for magnetization. The sim-
ulation compared to data have overall a similar
shape, although the rate of decrease in magne-
tization is quicker in the simulation rather than
in the CoNiFeCB sample. This may be because
the sample we are working with is not a pure fer-
romagnet. If the sample only included, say Fe,
one would expect a better fit between data and
simulated results. An interesting point to note is
that after magnetization reaches a minimum, in
both cases a slight increase in magnetization is
observed. Data should be taken in an extended
temperature region with the CoNiFeCB sample
to see if the slight increase in magnetization after
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Figure 5: Simulation results compared to ex-
perimental data measuring magnetization of
CoNiFeCB as a function of temperature.

600 ◦C reduces back down to minimum.

5 Conclusion

A 3-dimensional Ising model with the
Metropolis algorithm is successfully imple-
mented in a C++ program, and simulation of
the phase transition of a ferromagnet at high
temperature is observed. The Curie tempera-
ture is also observed as a discontinuity in the
total average energy of the system as tempera-
ture increases and as peaks in specific heat and
susceptibility in the simulated data. Magneti-
zation simulation is compared to measured data
from CoNiFeCB as a function of temperature.
Shapes between functions of simulation and data
show the simulation approaches the Curie tem-
perature quicker than our experimental measure-
ments. This is most likely because the ferromag-
netic sample we are using, CoNiFeCB, is not a
pure ferromagnet.
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