$X \rightarrow$ diHiggs $\rightarrow 4 \mathrm{~b}$ Boosted Analysis Preparations for Run 2

REU work at CERN winter 2015 with the Atlas Exotics group
Mentors : Stephane Willocq \& Massimiliano Bellomo
Christina Nelson
20 March 2015

Outline

I.) Introduction \& short recap on motivation for boosted analysis
II.) XhhBoosted package development update
III.) Preliminary results of 13 TeV sample jet cuts study
IV.) Happening Now \& Near future goals : background studies, QCD, ttbar with signal 20 release samples
V.) Backup slides on some cool things I learned

Discovery of the Higgs boson opens new possibilities of probing the Electroweak scale and the production of heavy particles at the LHC

- Use the Higgs boson as a tool for further discovery
- Many new physics models predict significant rates of Higgs pair production
- New resonances: Kaluza-Klein graviton $\mathrm{G}_{\mathrm{KK}} \rightarrow \mathrm{hh}$
- Extended Higgs sector, 2 Higgs doublet model, $\mathrm{H} \rightarrow \mathrm{hh} . .$.
- Non-resonant production: New coloured scalars, direct tthh vertices...

II.) Jets in ATLAS

- Transverse view (left): since the colliding partons have no momentum transverse to the beam axis, the jets are produced back to back in the transverse plane and have equal and opposite momenta.
- RZ-view (right): jets are not back to back due to the boost of the final-state system from the net momenta of the colliding partons along the beam axis, $\left(x_{1}-x_{2}\right) \frac{\sqrt{s}}{2}$.
- "Jets are not just smeared partons": they are matched by the number of degrees of freedom in the hard radiation that interferes at the amplitude level with the matrix element part of the calculation. (check out perturbation theory in backup)
- "Jets have no existence independent of the algorithm": jet algorithms do not find jets, they define them.

Atlas note: Performance of Jet Algorithms in the
Atlas Detectorigh mass jet event with dijet mass 3350 GeV and leading jets with (pT, eta, phi, color) of ($1800 \mathrm{GeV},-0.51,-0.85, \mathrm{red}$) and subleading jets with ($1470 \mathrm{GeV},-0.05,2.4$, green).
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayCONFnotes\#Search for New Phenomena in the

Measured Quantities, and the ATLAS detector... know it... love it

- rapidity (y), transverse momentum $\left(p_{T}\right)$

- $\Theta=$ polar angle measured with respect to the beam line.
- $\phi=$ azimuthal angle measured with respect to x axis.
- Rapidity: $y=\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}}$
- Pseudorapidity: $\eta=-\ln \frac{\theta}{2}$
- Transverse momentum: $p_{T}=p \times \sin \theta$
- Transverse energy: $E_{T}=E \times \sin \theta$

Detector \rightarrow measurements \rightarrow particle interactions \& cross sections \rightarrow compare to pertubative QCD fit \rightarrow compare to PDFs

Given all this how do we look for new physics and continue to investigate fundamental particles?

- If a b-quark is produced, the hadronization process will create a jet of hadrons, one of which will contain the bquark, known as b hadrons.
- The b-quarks are relatively long lived with lifetimes of order $1.5 \times 10^{-12} \mathrm{~s}$.

Discovery of the Higgs boson and measured properties are consistent with the Standard Model

- Branching ration (BR) : $\mathrm{BR}(j)=\frac{\Gamma_{j}}{\Gamma}$
- BR of $\mathrm{H} \rightarrow \mathrm{bb} \approx 57.7 \%$ at Higgs mass of 125 GeV
- Compare to BR of $\mathrm{H} \rightarrow \mathrm{WW} \approx 21.6 \%$
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageBR
- This gives an intuition that b flavor tagging and jet reconstruction will help increase sensitivity for searches and analysis

Leading to opportunities for searches with new physics models

- Many models predict significant Higgs pair production rates at high invariant mass
- Kaluza-Klein graviton $G_{K K}^{*}$ in Randall-Sundrum framework
- Warped Extra Dimensions
- 2Higgs Double Model (2HDM)

Decays of a $\mathbf{1 2 5} \mathbf{~ G e V}$ Standard-Model Higgs boson

http://atlas.physicsmasterclasses.org/en/zpath hboson.htm

Motivation for Boosted Analysis

- Angular separation for 2-body decay products of a heavy particle is approximately $\Delta R \approx \frac{2 m}{p_{T}}$, where $\Delta R=\sqrt{\eta^{2}+(\Delta \phi)^{2}}$.
- For a Higgs with $p_{T} \gtrsim 625 \mathrm{GeV}$, the threshold where jets would begin to merge in the detector is $\mathrm{R}=0.4$

Analysis Strategy from run1 Boosted Analysis

- Large-R trimmed jets with $R=1.0$
- Two b-tagged small R, R = 0.3 track jets ghost associated to each Large-R jet.
- This technique allows Higgs bosons with higher p_{T} to be reconstructed.

Leading jet $\mathrm{pT}>350 \mathrm{GeV}$

Subleading jet $\mathrm{pT}>250 \mathrm{GeV}$

III.) Analysis :

- Actively developing package with Max : XhhBosted that works with xAODAnaHelpers package
https://svnweb.cern.ch/trac/atlasphysexo/browser/Physics/Exoti c/JDM/hh4b/Run2/Code/XhhBoosted

The ATLAS Analysis Model

Schema proposed :

https://svnweb.cern.ch/trac/atlasphys-
exo/browser/Physics/Exotic/JDM/hh4b/Run2/Code/XhhBoosted/trunk/util/ runXhhBoosted.cxx

- Run common basic event selection, GRL
- Apply specific Boosted Event Selection functions, seen defined in AnalysisMacros.h here :

https://svnweb.cern.ch/trac/atlasphys-

exo/browser/Physics/Exotic/JDM/hh4b/Run2/Code/XhhBoosted/trunk/Root /SetXhhEventCuts.cxx

- The outputs of this algorithm are:
- A set of flags in EventInfo to check which cuts were passed
- A container in Tevent holding xAOD::Iparticle links to the 2 large jets, which are linked to 2 small R track jets
- Proposal to code a common package to make plots/tables out of this information
- Allow for code flexibility in development and better processing

EL::Job basicJobSetup(int argc, char* argv[])
\{ //
// Grab the configuration file
//
std::string configName = "./XhhBoosted/data/steer.config";
Configures input data
if(argc > 1) \{
std::cout << "Config file is set to: " << configName << std::endl;
configName= $\operatorname{argv[1];~}$
\}else\{
std::cout << "Config file defaults to: " << configName << std::endl;
\}
\& determines run mode

```
TEnv* config = new TEnv(configName.c_str());
TEnv* config = new TEnv(configName.c_str());
```

Configuration files encapsulated from steering macros and class functions to increase close versatility
//
// Determine the run Mode
//
TString m_runMode = config->GetValue("RunMode", "local");
std::string faxDSName = config->GetValue("FAXDataSetName", "Set DC Name in Config file");

```
//
// Set up the job for xAOD access:
// Follows the ASG guidelines and is fully supported
xAOD::Init().ignore();
```

//
// Construct the samples to run on:
//
SH::SampleHandler sh;
if(m_runMode.Contains("fax",TString::klgnoreCase)){
std::cout << " Running on fax over. " << faxDSName << std::endl;
SH::scanDQ2 (sh, faxDSName);
}else{
std::cout << " Running locally over one file. " << std::endl;
// this takes one single file (to be used for testing)
//
// Grab the Path from the config
//

```
std::stringinputFilePath=config>GetValue("LocalFilePath", "/share/t3data3/johnda/samples/mc14_13Te V.203496.MadGraphPythia8_AU2MSTW2008LO_RSG_hh_bbbb_m500.merge.AOD.e3219_s1982_s2008_ r5787_r5853_tid01604035_00/");
std::string inputFileName = config->GetValue("LocalFileName", "AOD.01604035._000002.pool.root.2");
```

 SH::DiskListLocal list (inputFilePath);
 SH::scanDir (sh, list, inputFileName);
 }
//
// Set the name of the input TTree. It's always "CollectionTree"
// for xAOD files.
//
sh.setMetaString("nc_tree", "CollectionTree");
//
// Print what we found:
//
sh.print();

```
```

//
// Create an EventLoop job:
//
EL::Job;
job.sampleHandler(sh);

```
```

//

```
//
// Set the number of events
//
int nEvents = config->GetValue("maxEvents", -1);
if(nEvents > 0)
job.options()->setDouble(EL::Job::optMaxEvents, nEvents);
    return job;
}
```

Create Event Loop job and preliminary job options

```
//
// Grab the configuration
//
std::string configName = "./XhhBoosted/data/steer.config";
if( argc > 1 ){
    std::cout << "Config file is set to: " << configName << std::endl;
    configName= argv[1];
}else{
    std::cout << "Config file defaults to: " << configName << std::endl;
}
```

TEnv* config = new TEnv(configName.c_str());
//
// Set the output directory
//
std::string submitDir = config->GetValue("SubmitDir", "runXhhBoostedOutput");
if(argc > 2) \{
submitDir $=\operatorname{argv}[2] ;$
\}
std::cout << "Output (Submit) Dir is: " << submitDir << std::endl;

```
EL::DirectDriver driver;
    driver.submit( job, submitDir );
    return;
}
void basicEventSelection(EL::Job& job, std::string name, std::string configFile)
{
    BasicEventSelection* baseEventSel = new BasicEventSelection(name, configFile);
    job.algsAdd( baseEventSel );
}
void calibrateJets(EL::Job& job, std::string name, std::string configFile)
{
    JetCalibrator* jetCalib = new JetCalibrator("jetCalib_"+name,configFile);
    job.algsAdd(jetCalib );
}
void selectCaloJets (EL::Job& job, std::string name, std::string configFile)
{
    JetSelector* jet_selection = new JetSelector ("selCaloJets_"+name,configFile);
    job.algsAdd(jet_selection );
}
```

```
void setXhhEventCuts(EL::Job& job, std::string name, std::string configFile)
{
    SetXhhEventCuts* setXhhEventCuts = new SetXhhEventCuts(name, configFile);
    job.algsAdd( setXhhEventCuts );
}
void eventCount(EL::Job& job, unsigned int eventsPerPrint = 100, bool debug=false)
{
    EventCount* eventCount = new EventCount();
    eventCount->m_eventsPerPrint = eventsPerPrint;
    job.algsAdd( eventCount );
    }
    // to be implemented still
    /*void calibrateMuons(EL::Job& job, std::string name, std::string configFile)
    {
        MuonCalibrator* muonCalib = new MuonCalibrator("muonCalib_"+name, configFile);
        job.algsAdd( muonCalib );
    }
void selectMuons(EL::Job& job, std::string name, std::string configFile)
{
    MuonSelector* muon_selection = new MuonSelector ("muons_"+name, configFile);
    job.algsAdd( muon_selection );
    }*/

Signal sample using:
- Mass of the \(G_{K K}\) at resonance of 500 GeV (working on obtaining different mass resonances presently )
- DC14 release \(19, \sqrt{s}=13 \mathrm{TeV}\)
- EventCount and SetXhhEventCuts are the classes accessed by macros

- Console output after running XhhBoosted :
```

Info in BasicEventSelection::finalize(): Number of events

```
Info in <JetSelector::finalize()>: selCaloJets_selCaloJets
```

Info in JetSelector::finalize(): selCaloJets_selCaloJets
Info in JetSelector::histFinalize(): Filling cutflow
Info in JetSelector::histFinalize(): Filling cutflow
Total Events Processed... 5000 Events (Rate: 220.751 Hz)
Total Events Processed... 5000 Events (Rate: 220.751 Hz)
Cut PassAssoTrackJets 315 0.063
Cut PassAssoTrackJets 315 0.063
Cut PassAtLeast2Jets 538 0.1076
Cut PassAtLeast2Jets 538 0.1076
Cut PassLeadJetPt 343 0.0686
Cut PassLeadJetPt 343 0.0686
Cut PassSubLeadJetPt 538 0.1076
Cut PassSubLeadJetPt 538 0.1076
Cut PassTrackJetEta 45 0.009
Cut PassTrackJetEta 45 0.009
Cut PassTrackJetPt 45 0.009
Cut PassTrackJetPt 45 0.009
Cut PassXhhTrig 0 0
Cut PassXhhTrig 0 0
Info in BJetSelector::finalize(): Deleting tool instances...
DiJets: Number of passed di-jets: 2576980377/(858993466)
DiJets: Number of passed di-jets: 2576980377/(858993466)
Info in JetSelector::histFinalize(): Calling histFinalize

```
Info in <JetSelector::histFinalize()>: Calling histFinalize
```

AntiKt10LCTopoJetsAuxDyn.GhostTrackCount.AntiKt10LCTopoJetsAuxDyn.GhostTrackCount

- AntiKt $\mathrm{R}=1.0$ jet trimming
- Pass 2 Jets : Leading and subleading with $p_{T}>350 \mathrm{GeV}$ and $p_{T}>250 \mathrm{GeV}$ respectively, both with $\eta<2.0$ (between fat jets)
- Tracks jet with $R=0.3$ are ghost associated to large R ungroomed jets
- Track jets must have $p_{T}>20 \mathrm{GeV}$ and $\eta<2.5$ (trimmed calorimeter jet and originate from primary vertex)
- Last step to be implemented before b-tagging delta $\eta<1.7$ cut between 2 fat jets

Console output:

> *printing out some information about the jets that are in the sample and that pass the cuts.

*actively working on getting different mass samples

Info in <SetXhhEventCuts: :execute()>	jet pt $=386.99 \mathrm{GeV}$	Info in <SetXhhEventCuts: :execute()>: jet pt $=379.72 \mathrm{GeV}$
Info in <SetXhhEventCuts: :execute()>	jet eta $=0.26$	Info in <SetXhhEventCuts: :execute()>: jet eta $=0.06$
Info in <SetXhhEventCuts: e execute()>	jet pt $=333.15 \mathrm{GeV}$	Info in <SetXhhEventCuts: :execute()>: jet pt $=354.35 \mathrm{GeV}$
Info in <SetXhhEventCuts: :execute()>	jet eta $=0.54$	Info in <SetXhhEventCuts: :execute()>: jet eta $=0.68$
Info in <SetXhhEventCuts: :execute()>	trackJetPt1 $=12.92 \mathrm{Ge}$	Info in <SetXhhEventCuts: execute()>: trackJetPt1 $=10.03 \mathrm{GeV}$
Info in <SetXhhEventCuts: :execute()>	trackJetPt2 = 174.34	Info in <SetXhhEventCuts: :execute()>: trackJetPt2 $=2.56 \mathrm{GeV}$
Info in <SetXhhEventCuts: :execute()>	trackJetPt3 $=12.92 \mathrm{Ge}$	Info in <SetXhhEventCuts: :execute()> : trackJetPt3 $=10.03 \mathrm{GeV}$
Info in <SetXhhEventCuts: :execute()>	trackJetPt4 = 174.34	Info in <SetXhhEventCuts: :execute()> : trackJetPt4 $=2.56 \mathrm{GeV}$
fo in <SetXhhEventCuts: :execute()>	jet pt $=267.74 \mathrm{GeV}$	Varning in <xAOD: THolder: :getAs>: Trying to retrieve ConstDa
Info in <SetXhhEventCuts: :execute()>	jet eta $=0.77$	et vl> pointer :
Info in <SetXhhEventCuts: :execute()>	jet pt $=257.73 \mathrm{GeV}$	Nā̄ning in <xAOD: THolder::getAs>: Trying to retrieve Con
Info in <SetXhhEventCuts: :execute()>	jet eta $=0.36$	et vl> pointer
Info in <SetXhhEventCuts: :execute()>	jet pt $=368.73 \mathrm{GeV}$	Vā̄ning in <xAOD: THolder::getAs>: Trying to retrieve Con
Info in <SetXhhEventCuts: e (execute()>:	jet eta $=0.85$	et v1> pointer
Info in <SetXhhEventCuts: :execute()>	jet pt $=287.15 \mathrm{GeV}$	Var̄ning in <xAOD: THolder::getAs>: Trying to retrieve
Info in <SetXhhEventCuts: :execute()>	jet eta $=0.18$	et vl> pointer
Info in <SetXhhEventCuts: :execute()>	trackJetPt1 $=2.11 \mathrm{GeV}$	Varning in <xAOD: THolder::getAs>: Trying to retrieve Cons
Info in <SetXhhEventCuts: e (execute()>	trackJetPt2 $=3.32 \mathrm{GeV}$	et_vl> pointer :
Info in <SetXhhEventCuts: ex (ecute()>	trackJetPt3 $=2.11 \mathrm{GeV}$	Varning in <xAOD: THolder::getAs>: Trying to retrieve Con
Info in <SetXhhEventCuts: execute()> $^{\text {a }}$	trackJetPt4 $=3.32 \mathrm{GeV}$	et v1> pointer
[n̄fo in < SetXhhEventCuts: :execute()>	jet pt $=682.92 \mathrm{GeV}$	Jarning in <xAOD: THolder::getAs>: Trying to retrieve
Info in <SetXhhEventCuts: :execute()>	jet eta $=0.16$	et vl> pointer
Info in <SetXhhEventCuts: :execute()>	jet pt $=671.33 \mathrm{GeV}$	Narning in <xAOD: THolder::getAs>: Trying to retrieve Con
[nfo in <SetXhhEventCuts: :execute()>	jet eta $=1.22$	et vl> pointer
[nfo in <SetXhhEventCuts: :execute()>	trackJetPt1 $=15.11 \mathrm{GeV}$	Info in <SetXhhEventCuts: :execute()>: jet pt $=382.62 \mathrm{GeV}$
[nfo in <SetXhhEventCuts: :execute()>	trackJetPt2 $=14.13 \mathrm{GeV}$	Info in <SetXhhEventCuts: :execute()>: jet eta = 1.09
[nfo in <SetXhhEventCuts: e (execute()>	trackJetPt3 $=15.11 \mathrm{GeV}$	Info in <SetXhhEventCuts: :execute()>: jet pt $=287.25 \mathrm{GeV}$
Info in <SetXhhEventCuts: :execute()>	trackJetPt4 $=14.13 \mathrm{GeV}$	Info in <SetXhhEventCuts: :execute()>: jet eta $=0.62$
Info in <SetXhhEventCuts: ex (ecute()>:	jet pt $=496.34 \mathrm{GeV}$	Info in <SetXhhEventCuts: :execute()>: trackJetPt1 = 7.93 GeV
Info in <SetXhhEventCuts: :execute()>	jet eta $=0.09$	Info in <SetXhhEventCuts: $\mathrm{execute}^{\text {() }}$) : trackJetPt2 $=7.38 \mathrm{GeV}$
Info in <SetXhhEventCuts: execute()> $^{\text {a }}$	jet pt $=362.89 \mathrm{GeV}$	Info in <SetXhhEventCuts: :execute()>: trackJetPt3 $=7.93 \mathrm{GeV}$
Info in <SetXhhEventCuts: e (execute()>	jet eta $=0.52$	Info in <SetXhhEventCuts: :execute()>: trackJetPt4 $=7.38 \mathrm{GeV}$

jetMass

After running package:

- After Leading $p_{T}>350 \mathrm{GeV}$ cut
- 1989 out of 5000 events pass the cut
- Jet mass peaks about 8 GeV greater than the Higgs mass
- Preliminary efficiency for 500 GeV resonance mass approximately 40 \%
- Statistical error and different masses will be studied jetPt

IV.) Happening now \& Near Future Goals :

- Working with Max on building XhhBoosted package, this is an xAOD Event loop based algorithm to be complete by May
- Working with Reina Camacho \& Michael Kagan in the Boosted $X \rightarrow$ bb tagging group (collaboration including Max and many others) https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/BoostedHigg sToBBTagging
- Study performance for anti-kt trimmed $R=1.0, R _s u b=0.3$ and R_sub $=0.2$, and $f=5 \%$ study performance at 13 TeV : signal versus QCD and top background.
- This is in alignment with what is needed in Diboson $\rightarrow 4 \mathrm{~b}$ Exotics Analysis studies as well. (the goal is not to create more work, but to work more efficiently as a collaboration and to help ensure an excellently prepared and tested analysis for run2)
- Plot efficiency and define signal, control, sideband regions
- Rel20 13TeV samples to work with B-tagging
- Background QCD and ttbar studies

Just some playing around with the useful features of vp1 for visualizing jets in hadronic collisions : yellow are tracks of particle collisions, red are muon tracks, and green are calorimeter energy deposits. One can get a visual sense $\mathbf{W} 9$ where jets may be reconstructed.

2 ChristinaNelson
a Log Out

- AtlasProtected

ATLAS Collaboration

TWiki > AtlasProtected Web > AtlasPhysics > FlavourTagging > BoostedBTagging > BoostedHiggsToBBTagging (2015-03-10, ReinaCamacho)
ED Edit Attach PDF

Boosted X--> bb tagging

\downarrow Basic Information
\downarrow Introduction
\downarrow Guidelines and Recommendations
$\downarrow 2015$ Pre-recommendations Campaign
\downarrow Standard Analysis
\downarrow Samples

Task ID	TODO Task description	\& Assignment	Status	Deadline
	Short term tasks			
A	B-tagging - Define working points and study performance for b-tagging using track jets			
A-1	Optimisation and performance at 8 and 13 TeV	M. Kagan, Q. Zeng	Complete: \square	Before Data
A-2	b-tagging calibration and extrapolation from 8 to 13 TeV	Unassigned?	Complete: \square	Before data
B	Jet algorithms - Study performance for anti-kt trimmed $\mathrm{R}=1.0, \mathrm{R}$ _sub=0.2 and $\mathrm{f}=5 \%$			
B-1	Performance at 8 and 13 TeV : signal vs QCD/top background	Christina Nelson	Complete: \square	Before Data
B-2	JMS and JES using QCD jets at 13 TeV	C. Delitzsch	Complete:	Before data
B-3	Cross-calibration using QCD jets 13 TeV samples	Unassigned?	Complete: \square	Before data
B-4	JES and JMS flavour uncertainty from H->bb using 13 TeV samples	Unassigned?	Complete: \square	Before data
C	Substructure - Using substructure variables adds on top of b-tagging?			
C-1	Performance at 8 and 13 TeV before and after b-tagging	Q. Zeng, Chiao-Ying Lin, T. Lenz, S. Ballensiefen	Complete:	Before Data

C. Nelson

Cool \& useful things I learned

Perturbation Theory

- The process of understanding interactions between particles by the exchange of force carrying gauge bosons.
- Two possible time-orderings for the process $a+b \rightarrow c+d$ which can occur via an intermediate state corresponding to the exchange of particle X.

Initial state $|i\rangle$ corresponds to particles $a+b$, intermediate state $|j\rangle$ corresponds to $c+b+X$, and final state $|f\rangle$ corresponds to $c+d$.

- Left diagram: particle a can be thought of as emitting the exchanged particle X, and then at a later time X is absorbed by b.
- Right diagram: particle b emitting the exchanged particle \tilde{X}, which is then absorbed by $a . \tilde{X}$ has the same mass as X but opposite charge.
- Rewriting the four-momentum of the exchanged particle X, as $q=p_{a}-p_{c}$ we find that

$$
M_{f i}=\frac{g_{a} g_{b}}{q^{2}-m_{X}^{2}} .
$$

> This remarkable result shows that the interaction matrix, depending on four momentum, is Lorentz invariant and is the sum of different time ordered processes!

Parton Distribution Functions:

- PDFs are obtained from experiment.

The dynamics of quarks interacting with each other inside a proton through the exchange of gluons results in a distribution of quark momenta within the proton. The distributions are expressed in terms of PDFs. For example, the bottom-quark PDF for the proton $b^{p}(x)$ is defined such that

$$
b^{p}(x) \delta x
$$

represents the number of bottom quarks within the proton with momentum fraction between x and $x+\delta x$.
Illustrating a few possible forms of PDFs:

(i) Proton a single point like particle which carries all the momenta of proton, at Dirac delta function $x=1$.
(ii) Proton contains 3 static quarks each carrying $\frac{1}{3}$ the momenta of the proton, at Dirac delta function $x=\frac{1}{3}$
(iii) Three quarks interact with each other and delta-function at $x=\frac{1}{3}$ is smeared out as the quarks exchange momentum
(iv) Higher-order processes, e.g. virtual quark pairs being produced from gluons inside the proton, tend to result in an enhancement of the PDFs at low x, reflecting the $\frac{1}{q^{2}}$ nature of the gluon propagator.

Parton Distribution Functions

PDFs reflect the underlying structure of the proton. At present they cannot be calculated from first principles. This is because the theory of QCD has a large coupling constant, and perturbation theory cannot be applied. Therefore the PDFs are extracted from measurements of the structure functions in deep inelastic scattering experiments (fixed target experiments) and other experimental data.

- Inclusive jet double-differential cross section as a function of jet p_{T} compared to next-leading-order (NLO) pQCD predictions, using current knowledge of PDFs corrections have been applied.

- QCD is found to provide excellent description of jet phenomena in hadron hadron collisions.
- Owing to the nature of QCD, quarks are always confined in hadrons. However, in high every collisions, it is quarks that are produced, not hadrons.
- As a result of QCD interaction, the strong interaction field between the quarks produce further quarks and antiquarks, known as hadronization
- From hadronization, each quark produced in a collision produces a jet of hadrons.

- hard scattering
- (QED) initial/final
state radiation
partonic decays, e.g.
$t \rightarrow b W$
- parton shower
evolution
nonperturbative gluon splitting
- colour singlets
- colourless clusters
- cluster fission
cluster \rightarrow hadrons
hadronic decays

Derivation of Time-ordered perturbation theory to the second order (for fun ${ }^{-)}$) :

In quantum mechanics, the transition rate between an in initial state, i, and final state, f, is given by Fermi's golden rule $\Gamma_{f i}=2 \pi\left|T_{f i}\right|^{2} \rho\left(E_{f}\right)$, where $T_{f i}$ is the transition matrix element, given by the perturbation expansion $T_{f i}=\langle f| V|i\rangle+\sum_{j \neq i} \frac{\langle f| V|j\rangle\langle j| V|i\rangle}{E_{i}-E_{j}}+\ldots$. Referring to left diagram on slide $3 \& 4$,
the quantum mechanical perturbation expansion is
$T_{f i}^{a b}=\frac{\langle f| V|j\rangle\langle j| V|i\rangle}{E_{i}-E_{j}}=\frac{\langle d| V|X+b\rangle\langle c+X| V|a\rangle}{\left(E_{a}+E_{b}\right)-\left(E_{c}+E_{X}+E_{b}\right)}$, where $T_{f i}^{a b}$ is the time ordering where the interaction between a and X occurs before that between X and b. Allowed by the energy-time uncertainty relation of quantum mechanics $E_{j} \neq E_{i}$. The non-invariant matrix element $V_{j i}=\langle c+X| V|a\rangle$ is related to the Lorentz Invariant (LI) matrix element $M_{j i}$, by normalizing the phase space wave function. Then,

$$
V_{j i}=M_{j i} \prod_{k}\left(2 E_{k}\right)^{-\frac{1}{2}}
$$

and the index k runs over the particles involved. Here, we have

$$
V_{j i}=\langle c+X| V|a\rangle=\frac{M_{a \rightarrow c+X}}{\left(2 E_{a} 2 E_{c} 2 E_{X}\right)^{\frac{1}{2}}}
$$

where $M_{a \rightarrow c+X}$ is the LI matrix element for the fundamental interaction $a \rightarrow c+X$. The requirement of LI on $M_{a \rightarrow c+X}$ places strong constraints on its possible mathematical structure. To give an example of particle exchange, the simplest possible Lorentz-Invariant coupling is here assumed to be a scalar. In this case, the matrix element is $M_{a \rightarrow c+X}=g_{a}$. Thus,

$$
V_{i j}\langle c \underset{\text { c. Nelson }}{X}| V|a\rangle=\frac{g_{a}}{\left(2 E_{a} 2 E_{c} 2 E_{X}\right)^{\frac{1}{2}}} .
$$

Where the magnitude of the coupling constant g_{a} is a measure of the strength of the scalar interaction. Similarly we can express g_{b} as the coupling strength in the $b+X \rightarrow d$ interaction vertex,

$$
V_{f j}=\langle d| V|X+b\rangle=\frac{g_{b}}{\left(2 E_{b} 2 E_{d} 2 E_{X}\right)^{\frac{1}{2}}} .
$$

Therefore, with the assumed scalar interaction, the second-order term in the perturbation series is

$$
T_{f i}^{a b}=\frac{\langle d| V|X+b\rangle\langle c+X| V|a\rangle}{\left(E_{a}+E_{b}\right)-\left(E_{c}+E_{X}+E_{b}\right)}=\frac{1}{2 E_{X}} \cdot \frac{1}{\left(2 E_{a} 2 E_{b} 2 E_{c} 2 E_{d}\right)^{\frac{1}{2}}} \cdot \frac{g_{a} g_{b}}{\left(E_{a}-E_{c}-E_{X}\right)}
$$

The LI matrix element for the process $a+b \rightarrow c+d$ is related by the corresponding transition matrix element by

$$
M_{f i}^{a b}=\left(2 E_{a} 2 E_{b} 2 E_{c} 2 E_{d}\right)^{\frac{1}{2}} T_{f i}^{a b}
$$

and thus,

$$
M_{f i}^{a b}=\frac{1}{2 E_{X}} \cdot \frac{g_{a} g_{b}}{\left(E_{a}-E_{c}-E_{X}\right)} .
$$

The matrix element $M_{f i}^{a b}$ is Lorentz invariant as a scalar interaction and defined in terms of wave functions with an appropriate LI normalization. For this second-order process in perturbation theory momentum is conserved at the interaction vertices but energy is not. Also, the exchanged particle X satisfies $E_{X}^{2}=\boldsymbol{p}_{x}^{2}+m_{x}^{2}$, and is called "on-mass shell". Similarly for the right hand side diagram on slides 3 and 4 , we have

$$
M_{f i}^{b a}=\frac{1}{2 E_{X}} \cdot \frac{g_{a} g_{b}}{\left(E_{b}-E_{d}-E_{X}\right)} .
$$

To obtain total amplitude of particle interaction, different amplitudes for a process are summed, giving

$$
M_{f i}=M_{f i}^{a b}+M_{f i}^{b a}=\frac{g_{a} g_{b}}{2 E_{X}} \cdot\left(\frac{1}{E_{a}-E_{c}-E_{\mathrm{X}}}+\frac{1}{E_{b}-E_{d}-E_{X}}\right) .
$$

Applying conservation of energy $E_{b}-E_{d}=E_{c}-E_{a}$, we have

$$
M_{f i}=\frac{g_{a} g_{b}}{\left(E_{a}-E_{c}\right)^{2}-E_{X}^{2}}
$$

For both diagrams the exchanged particles momenta is related by the Einstein energy-momenta relation $E_{X}^{2}=\boldsymbol{p}_{X}^{2}+m_{X}^{2}$. Momentum is conserved at each interaction vertex giving $\boldsymbol{p}_{X}=\left(\boldsymbol{p}_{a}-\boldsymbol{p}_{c}\right)$ for the first (left) time ordered process and $\boldsymbol{p}_{\tilde{X}}=\left(\boldsymbol{p}_{b}-\boldsymbol{p}_{d}\right)=-\left(\boldsymbol{p}_{a}-\boldsymbol{p}_{c}\right)$ for the second (right) time ordered process. For both processes energy of the exchanged particle can then be written $E_{X}^{2}=\boldsymbol{p}_{X}^{2}+m_{X}^{2}=\left(\boldsymbol{p}_{a}-\boldsymbol{p}_{c}\right)^{2}+m_{X}^{2}$. The matrix element becomes

$$
M_{f i}=\frac{g_{a} g_{b}}{\left(p_{a}-p_{c}\right)^{2}-m_{X}^{2}}
$$

Where p_{a} and p_{c} are the respective four-momenta of particles a and c. Writing the four-momentum of the exchanged virtual particle X as $q=p_{a}-p_{c}$, we have

$$
M_{f i}=\frac{g_{a} g_{b}}{q^{2}-m_{X}^{2}} .
$$

The term $\frac{1}{q^{2}-m_{X}^{2}}$ is referred to as the propagator and is associated with the exchanged particle with terms g_{a} and g_{b} associated with the interaction vertices.

Cross section for the production of two jets from t-channel gluon to gluon exchange process $q \mathrm{q} \rightarrow \mathrm{qq}$ is :

$$
\frac{d \sigma}{d Q^{2}}=\frac{4 \pi \alpha_{s}^{2}}{9 Q^{4}}\left[1-\left(1-\frac{Q^{2}}{\hat{s}}\right)^{2}\right]
$$

where $Q^{2}=-q^{2}$ and $\hat{s}=x_{1} x_{2} s$ is the center of mass energy of the colliding quarks. In terms of PDFs:

$$
\frac{d \sigma}{d Q^{2}}=\frac{4 \pi \alpha_{s}^{2}}{9 Q^{4}}\left[1+\left(1-\frac{Q^{2}}{s x_{1} x_{2}}\right)^{2}\right] g\left(x_{1}, x_{2}\right) d x_{1} x_{2}
$$

where $g\left(x_{1}, x_{2}\right)$ is the sum over the products of the relevant PDF process for scattering $q \mathrm{q} \rightarrow \mathrm{qq}$.
Conservation of energy and momenta implies
$x_{1}=\frac{p_{T}}{\sqrt{s}}\left(e^{+y_{3}}+e^{+y_{4}}\right)$ and $x_{2}=\frac{p_{T}}{\sqrt{s}}\left(e^{-y_{3}}+e^{-y_{4}}\right)$
Hence, $Q^{2}=p_{T}^{2}\left(1+e^{y_{4}-y_{3}}\right)$

